skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phillips, Elise K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. MacDonald, James H; Clary, Renee M; Archer, Reginald; Broadway, Ruby (Ed.)
    Participation in authentic scientific research has been shown to greatly benefit undergraduate students, both in terms of perception of science and knowledge of scientific concepts. We define authentic scientific research as projects in which results are unknown prior to performing experiments and are appropriate for presentation in peer-reviewed scientific journals and/or scientific conferences. Kindergarten through grade 12 (K–12) students have less frequent opportunities to participate in authentic research than university students, and the effects of research participation on such students are less well understood. From 2013 to the present, we organized two collaborations with different groups of K–12 students and teachers, each aimed at engaging K–12 students in authentic geoscience research, with a focus on K–12 students from excluded backgrounds who may have had restricted access to resources. First, the Malcolm X Shabazz Aquatic Geochemistry Team was an initiative to involve high school students at Malcolm X Shabazz High School in Newark, New Jersey, USA, in research focused on the activities of microbial communities inhabiting streams and rivers in New Jersey and eastern Pennsylvania. Second, the Integrating Continuous Experiential Activities for Geoscience Education (ICE-AGE) project is a Pathways into the Earth, Ocean, Polar and Atmospheric & Geospace Sciences (GEOPAths) project funded by the National Science Foundation that involves K–12 students in experiential learning through diverse means, including involving middle school students taking part in a summer program pseudonymously referred to as the Liberation Literacy Program (LLP) in geoscience research on a number of topics. Here, we report qualitative observations of the successes and challenges of these programs, as well as lessons learned, which may be useful for other researchers seeking to involve groups of K–12 students in authentic geoscience research education. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  2. Stewart, Frank J (Ed.)
    ABSTRACT Here we present the genomes of four marine agarolytic bacteria belonging to the Bacteroidota and Proteobacteria. Two genomes are closed and two are in draft form, but all are at least 99% complete and offer new opportunities to study agar-degradation in marine bacteria. 
    more » « less
  3. Alspaugh, J Andrew (Ed.)
    ABSTRACT Systemic infections byCandidaspp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, fromCandida albicansis a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed anin vitronucleotidase-coupled malachite-green-based high throughput assay for purifiedC. albicansCho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising averageZ’ score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects againstC. albicanscells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disruptingin vivoCho1 function by inducing phenotypes consistent with thecho1∆∆mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with aKiof 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCEFungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with aKivalue of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase. 
    more » « less